

SynthOSTM White Paper

By Bob Zeidman

Bob Zeidman, President e-mail: bob@zeidman.biz

Zeidman Technologies, Inc.
4950 Hamilton Ave. Tel (408) 871-7944
Suite 210 Fax (408) 871-7946
San Jose, CA 95130 www.zeidman.biz

February 2005 ZEIDMAN TECHNOLOGIES 2

THE PROBLEM
Microprocessors are showing up in almost every imaginable piece of hardware, from computer monitors to network routers
to automobiles to intelligent household appliances. This proliferation means that more software must be developed by more
programmers. These embedded systems programmers require a real-time operating system (RTOS) to control the various
tasks of the software. Over half of all embedded software developers write their own operating systems. Why is this so?
Mainly because the off-the-shelf operating systems are overly complex for the majority of embedded systems being
developed. These operating systems require a large memory space, which translates to higher costs for larger memory
devices. They also require a steep learning curve and specialized expertise.

An embedded programmer can purchase object code for an operating system, but that code is difficult to debug when
problems occur. Or the programmer can purchase source code but then must wade through tens of thousands of lines of code
or more, written by someone else, to find problems when they occur. While some operating systems can be purchased
outright, others require that royalties be paid for every product shipped. Royalties of this type can greatly increase the cost of
a product.

Embedded Linux was heralded several years ago as a perfect solution to these problems. However, the hype has turned out to
be greater than the reality. The code size is very large and requires lots of memory. Linux is designed for high-end processors
with memory management units, forcing applications to use complex processors that use more power and have a higher cost
than is otherwise needed. Linux was not developed as a real-time OS, meaning that the task-switching overhead is too great
for many applications. Also, the code has been developed by many different people, making debugging a very difficult task.

Programmers by their nature tend to prefer to write their own code so that they can maintain it more easily. There is a need
for a tool that allows embedded programmers to generate operating systems automatically and at a high level, but that still
gives them full visibility to the code and full control over its development.

SYNTHOS
SynthOS is such a tool. This revolutionary tool allows a programmer to synthesize a real-time operating system. The
programmer writes code in C and adds simple SynthOS statements to the code to specify inter-task communications and
operating system parameters. The output code, after synthesis, is still C code. By generating code in the same language as the
input code, SynthOS allows programmers to use all of their current tools — compilers, debuggers, interpreters, emulators,
etc. — for executing and debugging the resulting synthesized code. SynthOS also optimizes code and performs checking to
ensure that race conditions cannot occur and that tasks have the correct priorities and frequencies.

TECHNOLOGY
The patented technology from Zeidman Technologies that is used in SynthOS takes the concept of hardware synthesis and
applies it to software. SynthOS allows the software engineer to write code for specific tasks. When one task needs to call
another task, or wait for another task to complete, the programmer inserts a special primitive that looks like a C function call
and that is recognized by SynthOS. The programmer also uses SynthOS to specify the parameters of each task, such as the
task’s priority and its period, and to specify the requirements of the operating system such as the scheduling algorithm to use.
SynthOS is then run on all of the task code. SynthOS creates the appropriate mutexes, semaphores, flags, message queues,
and mailboxes for each task and inserts the appropriate code at the appropriate points in the task. SynthOS also creates the
RTOS to schedule execution of the tasks. Two example results are illustrated in Figure 1. The code written by the
programmer is represented by the yellow areas. The code generated automatically by SynthOS is represented by the blue
areas. Note that each task is mostly written by the programmer, but SynthOS inserts the RTOS data structure manipulation
code and the RTOS communication code into each task. SynthOS also generates the RTOS that controls execution of each
task.

TASK5

TASK4

TASK3

TASK2

TASK1

RTOS
kernel

TASK5

TASK4

TASK3

TASK2

TASK1

RTOS
kernel

 KEY: Task management code
User code

Figure 1. SynthOS code generation

SynthOS can be tuned to different processors to optimize code for these processors. SynthOS automates the process of
creating the operating system so that the programmer can focus on writing the specific tasks for the device. Because the
output of SynthOS is in the same language as the input, the programmer has complete visibility to everything that is going on
in the operating system. All of the tools that are used to compile and debug the tasks can also be used to compile and debug
the operating system.

USER INTERFACE
SynthOS is very easy to set up and use. It is written in Java to run on any computer and has a simple command line interface.
SynthOS is easily integrated into standard integrated development environments such as Eclipse and Cygwin.

CASE STUDIES
Zeidman Technologies has performed a number of case studies for comparing the development costs and development times
for using SynthOS versus other solutions in several projects as described below.

Flat Panel Display
Table 1 shows a detailed schedule for the development of firmware for a consumer flat panel display. This two-person project
was a real project and the numbers for the actual schedule are accurate. The proprietary RTOS for this project was developed
in-house. The SynthOS schedule is an estimate of how SynthOS could have been used to speed development and lower
development costs. Using SynthOS, this flat panel would have had a savings of nearly $43,000 in labor costs and would have
gotten to market almost 10 weeks sooner.

February 2005 ZEIDMAN TECHNOLOGIES 3

Flat panel display firmware development

Task Man-weeks Cost Man-weeks Cost
Writing firmware specification 6 $13,846 4 $9,231
Code cyclic executive 6 $13,846 1 $2,308
Code startup task 8 $18,462 8 $18,462
Simple interface driver tasks 6 $13,846 5.4 $12,462
Complex interface driver tasks 24 $55,385 21.6 $49,846
Simple video controller tasks 8 $18,462 7.2 $16,615
OSD controller tasks 8 $18,462 7.2 $16,615
Advanced video controller tasks 12 $27,692 10.8 $24,923
Internal tables for controlling video specs 2 $4,615 2 $4,615
NVRAM control task 2 $4,615 1.8 $4,154
Additional debug and integration 16.4 $37,846 13.8 $31,846
Code optimization 6 $13,846 4 $9,231
Documentation 4 $9,231 3 $6,923

TOTAL 108.4 $250,154 89.8 $207,231

Cost savings $42,923
Time-to-Market savings (weeks) 9.3

Predicted ScheduleActual Schedule
Using SynthOS

Table 1. Flat panel firmware development

Zeidman Technologies vs. Wind River
Figure 2 shows the total cost of ownership for using the VxWorks RTOS from Wind River versus using SynthOS to
synthesize an RTOS for an average Wind River customer. The Wind River customer pays royalties for each RTOS shipped
with a product. The Zeidman Technologies customer pays for SynthOS and all of the code it generates is royalty free. For
each of three years, the SynthOS TCO is about one fifth that of VxWorks.

$0

$100,000

$200,000

$300,000

$400,000

$500,000

$600,000

$700,000

Zeidman Wind River Zeidman Wind River Zeidman Wind River

Year 1 Year 2 Year 3

Tools OS Lic/Unit Ann. Maint.
Figure 2. Three Year TCO for SynthOS vs. VxWorks

February 2005 ZEIDMAN TECHNOLOGIES 4

February 2005 ZEIDMAN TECHNOLOGIES 5

PROJECTS
Zeidman Technologies has created several projects in order to demonstrate the usefulness of SynthOS and its advantages
over off-the-shelf RTOSes. These projects are described below.

Multitasking Web Server
An Altera Cyclone EP1C20 FPGA with an embedded NIOS 32-bit soft processor was used to control a web server that was
performing low-level hardware tasks while serving up Web pages. The development for this very first application of
SynthOS took several weeks. The resulting RTOS kernel was about 3K bytes. This same code was re-synthesized and
compiled for an 8-bit Cypress PSoC resulting in an RTOS of about 1.2K bytes.

Multiprocessor “Hello World” Application
A Xilinx Virtex II-Pro FPGA containing an embedded 32-bit PowerPC hard processor and two embedded 32-bit MicroBlaze
soft processors each sent “hello world” to a single serial port. Each processor used an RTOS to control the serial port at
different communication rates. The RTOS also controlled inter-processor communication to avoid race conditions. The
PowerPC RTOS generated by SynthOS was about 1.5K bytes. Each MicroBlaze RTOS generated by SynthOS was less than
1K bytes.

Heterogeneous Multiprocessing Robot Arm
A Xilinx Virtex II-Pro FPGA containing an embedded 32-bit PowerPC hard processor and an embedded 32-bit MicroBlaze
soft processor was used to control a serial port mouse and a multiple joint robot arm. Attempts to use uClinux, a small,
embedded version of Linux promoted by Xilinx, was unsuccessful after several weeks of effort. SynthOS was able to create
an RTOS for each processor in 3 days, most of which was spent setting up the workstation that ran SynthOS. The resulting
RTOS for the PowerPC was 1.2K bytes while the RTOS for the MicroBlaze was less than 900 bytes.

Lego Mindstorms Robot
A Lego Mindstorms robot is shipped with 26 Kbytes of total memory. The operating system shipped with the robot uses
about 22K bytes, leaving the user with only 4K bytes for applications. Many users substitute the widely available brickOS,
which uses only about 11K bytes, leaving the user with 15K bytes for applications. SynthOS was synthesized for a
Mindstorms robot and the resulting RTOS used only 2K bytes, leaving 24K bytes for user applications. SynthOS increased
the user space by a factor of 6 and also supported more tasks and more global variables, allowing much more complexity for
the applications.

Comparison of RTOS Sizes
From the above projects, summarized in Table 2, the sizes of RTOSes synthesized by SynthOS are compared to sizes of off-
the-shelf RTOSes. As can be seen, in all cases the synthesized RTOS produced by SynthOS is significantly smaller than all
others. The implication is that SynthOS allows systems to be implemented using fewer memory chips. SynthOS also allows
systems to be integrated more easily into a single chip SOC.

Processor (RTOS Size in Byes) RTOS Altera NIOS Cypress PSoC Lego RCX Xilinx MicroBlaze Xilinx PowerPC
SynthOS 3.0K 1.2K 2.0K 900 1.5K
brickOS 11.0K
Lego OS 24.0K
Microtronix uClinux 100K* 100K*
MontaVista Linux 500K**
*based on estimates of compiled code
**based on published numbers from the vendor

Table 2. Comparison of RTOS sizes

February 2005 ZEIDMAN TECHNOLOGIES 6

CONCLUSION
SynthOS can greatly speed up the development time and testing time for any embedded system. The code produced by
SynthOS is completely royalty free, making it very inexpensive over the life of the system. Also, the memory footprint
required by the operating system is minimized because SynthOS only creates the code required for the various tasks – there is
no unused or unwanted code. In many cases, system designers can port their software to a smaller, less expensive, lower
power processor with SynthOS, because the optimized RTOS produced by SynthOS can run on a smaller processor than one
required by an off-the-shelf RTOS.

SynthOS also has the unique ability to eliminate race conditions, a particularly difficult problem to isolate and debug in
typical systems. This ability significantly reduces system debug time. Because of its ease of use, SynthOS makes
multiprocessor systems on a chip a reality for the first time.

Software synthesis is the most significant development in software development since the compiler. SynthOS uses software
synthesis to fulfill the promise of automatic code generation for low cost, small footprint RTOSes. By taking hardware
synthesis as its model, SynthOS gives a programmer the flexibility and control over embedded system design that no off-the-
shelf RTOS or programming development tool can offer, while allowing the programmer to work at a much higher level of
abstraction.

	THE PROBLEM
	SYNTHOS
	TECHNOLOGY
	USER INTERFACE
	CASE STUDIES
	Flat Panel Display
	Zeidman Technologies vs. Wind River

	PROJECTS
	Multitasking Web Server
	Multiprocessor “Hello World” Application
	Heterogeneous Multiprocessing Robot Arm
	Lego Mindstorms Robot
	Comparison of RTOS Sizes

	CONCLUSION

